Speaker verification score normalization using speaker model clusters

نویسندگان

  • Vijendra Raj Apsingekar
  • Phillip L. De Leon
چکیده

Among the various proposed score normalizations, Tand Z-norm are most widely used in speaker verification systems. The main idea in these normalizations is to reduce the variations in impostor scores in order to improve accuracy. These normalizations require selection of a set of cohort models or utterances in order to estimate the impostor score distribution. In this paper we investigate basing this selection on recently-proposed speaker model clusters (SMCs). We evaluate this approach using the NTIMIT and NIST-2002 corpora and compare against Tand Z-norm which use other cohort selection methods. We also propose three new normalization techniques, D-, DTand TC-norm, which also use SMCs to estimate the normalization parameters. Our results show that we can lower the equal error rate and minimum decision cost function with fewer cohort models using SMC-based score normalization approaches. 2010 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel text-independent speaker verification method using the global speaker model

In this paper a new text-independent speaker verification method is proposed based on likelihood score normalization and the global speaker model, which is established to represent the universal features of speech and environment, and to normalize the likelihood score. As a result the equal error rates are decreased significantly, verification procedure is accelerated and system adaptability is...

متن کامل

Text-independent speaker verification using virtual speaker based cohort normalization

In this paper, we propose a new score normalization method for text-independent speaker verification using GMM (Gaussian Mixture Model). In the proposed method, cohort model is designed as virtual speaker model based on the similarity of local acoustic information between the reference speaker and other customers. The similarity is determined using statistical distance between model components ...

متن کامل

A new score normalization method for speaker verification with virtual impostor model

User authentication system using a smart card or authentication token is drawing more and more attention. The limitation of the size of the RAM inside the processor for user authentication necessitates a verification algorithm with the efficient usage of the memory. In this paper, we present a score normalization method, which is suitable for embedded speaker verification system. Proposed score...

متن کامل

A Review of Various Score Normalization Techniques for Speaker Identification System

This paper presents an overview of a state-of-the-art text-independent speaker verification system using score normalization. First, an introduction proposes a modular scheme of the training and test phases of a speaker verification system. Then, the most commonly speech parameterization used in speaker verification, namely, cepstral analysis, is detailed. Normalization of scores is then explai...

متن کامل

Feature and score normalization for speaker verification of cellular data

This paper presents some experiments with feature and score normalization for text-independent speaker verification of cellular data. The speaker verification system is based on cepstral features and Gaussian mixture models with 1024 components. The following methods, which have been proposed for feature and score normalization, are reviewed and evaluated on cellular data: cepstral mean subtrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Speech Communication

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2011